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Abstract 

 This paper describes a theory of the velocity space scattering of charged particles 

in a static magnetic field composed of a uniform background field and a sum of 

transverse, circularly polarized, magnetic waves.  When that sum has many terms the 

auto-correlation time required for particle orbits to become effectively randomized is 

small compared to the time required for the particle velocity distribution to change 

significantly.  In this regime the deterministic equations of motion can be transformed 

into stochastic differential equations of motion.  The resulting stochastic velocity space 

scattering is described, in part, by a pitch angle diffusion rate that is a function of initial 

pitch angle and properties of the wave spectrum.  Numerical solutions of the 

deterministic equations of motion agree with the theory at all pitch angles, for wave 

energy densities up to and above the energy density of the uniform field, and for different 

wave spectral shapes.  
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I.  INTRODUCTION 

 Descriptions of charged particle scattering by magnetospheric, inter-planetary, 

and cosmic magnetic fields have a long history that has evolved with our ability to 

measure these particle fluxes and their associated fields.1, 2  If the magnetic fields are 

stationary, the scattering is elastic and the velocity of a single particle is confined to a 

constant energy shell in three-dimensional velocity space.  Furthermore, when the 

average magnetic field does not vanish, it establishes a direction with respect to which 

the orientation of the particle velocity vector can be described in terms of a pitch angle 

€ 

θ  

and an azimuthal or phase angle 

€ 

φ .   

 We are primarily concerned in this paper with the pitch angle scattering of high-

energy, relativistic electrons trapped in the Earth’s magnetic field as these particles 

interact with low frequency Alfvén/ion-cyclotron waves, also known as EMIC waves.3  

These waves can cause electrons to scatter into their pitch angle loss cone and be 

absorbed in the earth’s atmosphere.4, 5, 6, 7, 8, 9, 10, 11  Enhanced Alfven/ion-cyclotron 

fluctuations are commonly observed in the outer radiation belts of the terrestrial 

magnetosphere12, 13, 14 and are produced by a cyclotron instability driven by an ion 

temperature anisotropy 

€ 

T⊥ T|| > 1 where here the symbols "⊥" and "||" refer to directions 

perpendicular and parallel to the average or background magnetic field.15 

 High-energy relativistic electrons are sometimes injected into the magnetosphere 

by magnetic storms16,17 and interact strongly with field-aligned Alfvén/ion-cyclotron 

waves when their speed 

€ 

V  and pitch angle 

€ 

θ  satisfy the linear resonance condition, that 

is, when 

€ 

ω − kV cosθ = −Ωoe  where 

€ 

Ωoe = eBo γme  and 

€ 

γ = 1 1−V 2 c 2 .  Typically, 

Alfvén/ion-cyclotron wave frequencies 

€ 

ω  are so low that 

€ 

ω < Ωoi << Ωoe  where 
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€ 

Ωoi = eBo mi .  In this case the resonance condition reduces to 

€ 

kVo cosθ ≈ Ωoe  and the 

particles interact with effectively static magnetic waves.  Put another way:  when 

relativistic electrons interact with Alfvén/ion-cyclotron waves their pitch angles diffuse 

much more rapidly than their energy.  It is for this reason that we limit our analysis to the 

interaction of charged particles with static magnetic waves. 

 Most descriptions of pitch angle scattering that are not purely numerical exploit 

the assumptions of a wave-particle interaction theory variously known as quasi-linear, 

weak turbulence, and second-order theory.18, 19, 20  Quasi-linear theory describes the self-

consistent interaction of plasma particles with waves generated by the particle 

distributions by expanding particle orbits around zero-order trajectories.  Often this 

expansion is justified on the basis of small wave amplitudes.  Most treatments of fast 

electron pitch angle scattering by Alfvén/ion-cyclotron waves begin with quasi-linear 

theory.21, 22, 23, 24 

 An alternative method for studying the pitch angle scattering of energetic 

electrons is to follow test particle dynamics in prescribed waves that are obtained either 

analytically25 or from plasma simulation.26  Then the scattering rates can be obtained 

directly from test particle data and compared with quasi-linear theory.   

 By considering only the reaction of charged particles to prescribed waves, test 

particle simulations simplify the general interaction problem.  The method of “mapping” 

pioneered by C. F. F. Karney27 also separates particle reaction from field generation, and, 

like the current approach, issues in stochastic differential equations.  Yet, Karney’s 

particular methods are different from ours and he applied them to a different problem – 

that of lower hybrid drift wave heating in tokomak plasmas.  
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 Here we outline yet another approach to wave-particle interaction that exploits 

general statistical principles without formally link wave fields to plasma properties.  

Neither do we explicitly expand particle orbits around zero-order trajectories nor limit 

waves to small amplitudes.  Rather, we start with deterministic equations of motion for a 

charged particle in a given, static, magnetic field, consisting of a uniform background 

field and transverse, circularly polarized waves, and make only those assumptions 

necessary to turn these equations into stochastic differential equations that describe pitch 

angle scattering.   

 The assumptions we make – we call them the random variable, the two-time 

scale, and the random phase assumptions – have a mathematical character whose physical 

meaning is revealed only after their consequences are derived.  In this way we avoid 

using the wave magnitude as an explicit perturbation parameter.  However, a limitation 

on the relative wave energy density does emerge from the consequences of these 

assumptions – a limitation that involves not only the wave energy but also the particle 

pitch angle and other properties of the wave spectrum.  For instance, the expression 

derived for the pitch angle diffusion rate at small pitch angles remains valid even when 

the wave energy density is many times larger than the energy density in the background 

field. 

 We work exclusively with deterministic and stochastic differential equations, 

rather than with mathematically equivalent kinetic equations, that is, with the Vlasov or 

Fokker-Planck equations.  While the same physical content can be expressed in both of 

these mathematical languages,28, 29 our assumptions are more easily expressed in terms of 
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differential quantities, and our results more directly compared with numerical solutions of 

the differential equations modeled in test particle simulations. 

 Because we are concerned with pitch angle scattering by prescribed, stationary, 

magnetic waves, particle velocities evolve on a constant energy shell in velocity space.  

Grid-free test particle simulations on this shell are particularly convenient.  We use such 

calculations to illustrate the theory and demonstrate the degree to which the predicted 

drift and diffusion coefficients are realized.  Indeed, these calculations agree with the 

theory at all pitch angles, for wave energy densities from 

€ 

10−4  to 

€ 

102 times as large as the 

energy density in the background field and for different wave spectral shapes. 

 This paper is organized in the following sections.  In Section II we formulate the 

deterministic equations that define the physics model, while in Section III we apply the 

three statistical assumptions to the deterministic model equations and in this way turn 

them into stochastic differential equations.  From these we extract particle pitch angle 

drift and diffusion coefficients that are parameterized by an auto-correlation time -- an 

expression of which is derived in Section IV.  In Section V we investigate the physical 

limitations that make these results consistent with the assumptions that produce them.  

We report on numerical test particle simulations that illustrate and verify the theory in 

Section VI, and finally, in Section VII, we summarize and conclude. 

   

II.  DETERMINISTIC MODEL  

 The equations of motion for a charged particle in a uniform magnetic field 

€ 

Bo ˆ x  

and a transverse magnetic wave field 

€ 

By x( ) ˆ y  and 

€ 

Bz x( ) ˆ z  that depends only upon position 

€ 

x  along the direction of the background field are 
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€ 

dVx

dt
= VyΩz −VzΩy  , (1a) 

 

  

€ 

dVy

dt
= VzΩx −VxΩz  , (1b) 

 

  

€ 

dVz

dt
= VxΩy −VyΩx  , (1c) 

and 

  

€ 

dx
dt

= Vx  (1d) 

 

where 

€ 

Ωx = Ωo = qBo γm  , 

€ 

Ωy = Ωy x( )= qBy x( ) γm , and 

€ 

Ωz = Ωz x( ) = qBz x( ) γm  are 

(signed) cyclotron frequencies.  Here 

€ 

γ  is the Lorentz factor 

€ 

γ = 1 1−V 2 c 2  and 

€ 

V  is 

the speed of the charged particle.   

 We transform the Cartesian velocity components, 

€ 

Vx , 

€ 

Vy , and 

€ 

Vz , to the spherical 

polar velocity coordinates 

€ 

V , 

€ 

θ , and 

€ 

φ  where 

€ 

θ  is the particle pitch angle and 

€ 

φ  is the 

particle phase angle.  The transformation is defined by 

 

  

€ 

Vx = V cosθ  , (2a) 

 

  

€ 

Vy = V sinθ cosφ  , (2b) 

and 
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€ 

Vz = V sinθ sinφ  . (2c) 

 

Equations (2) transform the equations of motion (1) into 

 

  

€ 

dθ
dt

= sinφΩy x( ) − cosφΩz x( ) (3a) 

 

  

€ 

dφ
dt

= −Ωo +
cosθ
sinθ

cosφΩy x( ) + sinφΩz x( )[ ]  , (3b) 

and 

  

€ 

dV
dt

= 0  . (3c) 

 

 We choose the transverse field to be a sum of negative helicity,30 circularly 

polarized waves described by 

 

  

€ 

Ωy x( ) = Ωk cos kx +αk( )
k
∑  (4a) 

and 

  

€ 

Ωz x( ) = Ωk sin kx +αk( )
k
∑  (4b) 

 

where 

€ 

αk  is a phase angle associated with wave number 

€ 

k .  We shall see that these 

waves are resonant with electrons moving in the positive direction, that is, in a direction 

such that 

€ 

V cosθ > 0. 

 Combining equations (1d), (3), and (4) produces, after some algebra, 
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€ 

dθ
dt

= − Ωk sin kx +αk −φ( )
k
∑  , (5a) 

 

  

€ 

dφ
dt

= −Ωo +
cosθ
sinθ

Ωk cos kx +αk −φ( )
k
∑  , (5b) 

and 

  

€ 

dx
dt

= Vo cosθ   (5c) 

 

where here and subsequently we use 

€ 

Vo  to denote the constant particle speed.  These are 

the deterministic equations of motion upon which the rest of this paper is founded. 

 

III.  STOCHASTIC ANALYSIS 

 When the sums in (5a) and (5b) include a large number of waves, equations (5) 

mimic stochastic differential equations and the variables 

€ 

θ , 

€ 

φ , and 

€ 

x  mimic random 

variables.  We show this in the following way. 

 First we formally integrate equations (5a) and (5b) over an interval from 

€ 

t  to 

€ 

t + Δt  so that 

 

  

€ 

Δθ = − Ωk sin kx +αk −φ( )
k
∑ dt

t

t+Δt

∫  (6a) 

and 

  

€ 

Δφ = −ΩoΔt +
cosθ
sinθ

Ωk cos kx +αk −φ( )
k
∑ dt

t

t+Δt

∫   (6b) 
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where 

€ 

Δθ = θ t + Δt( ) −θ t( )  and 

€ 

Δφ = φ t + Δt( ) −φ t( ) .  We now break 

€ 

Δt  into 

€ 

n sub-

intervals each of duration 

€ 

Δτ = Δt n  so that 

 

  

€ 

Δθ = − Ωk sin kx +αk −φ( )dt
k
∑

t+ i−1( )Δτ

t+ iΔτ

∫
i=1

n

∑  (7a) 

and 

  

€ 

Δφ = −ΩoΔt +
cosθ
sinθ

Ωk cos kx +αk −φ( )dt
k
∑

t+ i−1( )Δτ

t+ iΔτ

∫
i=1

n

∑  . (7b) 

 

We further rewrite equations (7) in terms of the definitions 

 

  

€ 

Ψi t;Δτ( ) = Ωk sin kx +αk −φ( )dt
k
∑

t+ i−1( )Δτ

t+ iΔτ

∫  (8a) 

and 

  

€ 

Ζ i t;Δτ( ) =
cosθ
sinθ

Ωk
k
∑ cos kx +αk −φ( )

t+ i−1( )Δτ

t+ iΔτ

∫ dt  (8b) 

 

so that equations (7) become 

 

  

€ 

Δθ = − Ψi
i=1

n

∑ t;Δτ( ) (9a) 

and 
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€ 

Δφ = −ΩoΔt + Ζ i t;Δτ( )
i=1

n

∑  . (9b) 

 

The dimensionless variables 

€ 

Ψi t;Δτ( )  and 

€ 

Ζ i t;Δτ( )  are proportional, respectively, to the 

increment in particle pitch angle 

€ 

θ  and phase angle 

€ 

φ  caused by the magnetic waves 

during sub-interval 

€ 

i  of duration 

€ 

Δτ . 

 Thus far we have merely re-written the deterministic equations (5).  In particular, 

we have made no assumption concerning the size of 

€ 

Δτ  relative to the size of 

€ 

Δt  other 

than that 

€ 

Δτ ≤ Δt  since the number of sub-intervals in an interval must be a natural 

number.  Now we are ready to investigate the consequences of the following 

assumptions. 

 Random Variable Assumption.  We assume that the sub-interval 

€ 

Δτ  is large 

enough that the quantities 

€ 

Ψi t;Δτ( )  and 

€ 

Ζ i t;Δτ( )  associated with different sub-intervals 

are statistically independent random variables.  In other words, we assume that the sub-

interval 

€ 

Δτ  is greater than or equal to an auto-correlation time 

€ 

ΔτC , that is, 

€ 

Δτ ≥ ΔτC  

where the auto-correlation time 

€ 

ΔτC  is the longest time over which the particle sub-

increments remain correlated with each other.31, 32 

 Two Time Scale Assumption.  We assume that the interval 

€ 

Δt  and sub-interval 

€ 

Δτ  represent two widely separate time scales -- 

€ 

Δt  being an interval over which the 

dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x  change significantly and 

€ 

Δτ  being the sub-interval over 

which the increments 

€ 

Ψi t;Δτ( )  and 

€ 

Ζ i t;Δτ( )  become statistically independent random 

variables.  Thus, we assume that the number of sub-intervals 

€ 

Δτ  in an interval 

€ 

Δt  is a 

large number 

€ 

n = Δt Δτ( ) >> 1.  Alternatively, 

€ 

Δτ = Δt n( ) << Δt .  Since we intend to 
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exploit 

€ 

n >> 1 or, alternatively, 

€ 

Δτ Δt << 1 we make the two time scales, 

€ 

Δτ  and 

€ 

Δt , as 

widely separated as possible.  Therefore, we chose the sub-interval 

€ 

Δτ  to be equal to an 

auto-correlation time 

€ 

ΔτC . 

 The random variable and two time scale assumptions constrain the auto-

correlation time 

€ 

ΔτC  in opposite directions.  The former requires that 

€ 

ΔτC  be just large 

enough that the quantities 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ) associated with different sub-

intervals are statistically independent random variables, while the latter requires that 

€ 

ΔτC  

be much smaller than the time 

€ 

Δt  required for the dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x  to 

change significantly.  Both of these conditions can be met when the number of waves is 

large.  The form of the definitions of 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ) contained in equations (8) 

suggest as much.  In particular, if the variables 

€ 

θ  and 

€ 

φ  change very little during an auto-

correlation time 

€ 

ΔτC , the sums on the right hand side of (8) must be over many waves in 

order that different sub-increments be statistically independent, random variables. 

 Given that 

€ 

n >> 1 and that the moments of the statistically independent random 

increments 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ) are finite, as is required since these are proportional 

to bounded angles, the sums on the right hand side of equations (9) satisfy the conditions 

of the central limit theorem.33, 34  Accordingly, this sum approaches, in the limit of a large 

number of statistically independent addends, a normal random variable with mean and 

variance equal, respectively, to the sum of the means and variances of the addends.  Thus, 

 

  

€ 

Δθ = −Nθ ,t mean Ψi t;ΔτC( ){ }
i=1

n

∑ , var Ψi t;ΔτC( ){ }
i=1

n

∑
 

 
 

 

 
  (10a) 

and 
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€ 

Δφ = −ΩoΔt + Nφ ,t mean Ζ i t;ΔτC( ){ }
i=1

n

∑ , var Ζ i t;ΔτC( ){ }
i=1

n

∑
 

 
 

 

 
   (10b) 

 

where, for example, the notation 
  

€ 

Nθ ,t …( ), …( )[ ]  indicates a normal random variable with 

mean equal to its first argument and variance equal to its second argument.  The 

subscripts 

€ 

θ  and 

€ 

t  indicate that this normal random variable is statistically independent 

of normal random variables notated with other dependent variables and different times 

€ 

t . 

 Since, according to the two time scale approximation, the dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x  change very little during an autocorrelation time 

€ 

ΔτC , we may expand the 

integrations in (8) defining 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ) around their value at the beginning 

of each sub-interval in terms of small auto-correlation time 

€ 

ΔτC .  Accordingly, through 

second order in 

€ 

ΔτC , 

 

€ 

Ψi t;ΔτC( ) = 

 

€ 

ΔτC Ωk sin kx +αk −φ( )
k
∑ +

ΔτC
2

2
Ωk cos kx +αk −φ( ) k dxdt −

dφ
dt

 

 
 

 

 
 

k
∑   (11a) 

 

and 

  

€ 

Ζ i t;ΔτC( ) =  

 

€ 

ΔτC
cosθ
sinθ

Ωk
k
∑ cos kx +αk −φ( ) − ΔτC

2

2sin2θ
Ωk

dθ
dt

 
 

 
 
cos kx +αk −φ( )

k
∑   

  

€ 

−
ΔτC

2

2
cosθ
sinθ

Ωk sin kx +αk −φ( ) k dx
dt
−
dφ
dt

 
 

 
 k

∑  (11b) 
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where the dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x  and their time derivatives on the right hand 

sides of (11a) and (11b) are evaluated at the beginning of each sub-interval 

€ 

i , that is, at 

time 

€ 

t + ΔτC i −1( ) .  Given equations (5) we find that 

 

  

€ 

k
dx
dt
−

dφ
dt

= kVo cosθ +Ωo −
cosθ
sinθ

Ω ′ k cos ′ k x +α ′ k −φ( )
′ k 
∑  . (12) 

 

Substituting the right hand sides of equations (5a) and (12) into equations (11) produces 

 

€ 

Ψi t;ΔτC( ) = ΔτC Ωk sin kx +αk −φ( )
k
∑   

 

€ 

+
ΔτC

2

2
Ωk

k
∑ cos kx +αk −φ( ) kVo cosθ +Ωo −

cosθ
sinθ

Ω ′ k 
′ k 
∑ cos ′ k x +α ′ k −φ( )

 

 
 

 

 
  (13a) 

 

and 

 

€ 

Ζ i t;τC( ) = ΔτC
cosθ
sinθ

Ωk cos kx +αk −φ( )
k
∑  

 

€ 

+
ΔτC

2

2sin2θ
Ω ′ k sin ′ k x +α ′ k −φ( )

′ k 
∑
 
 
 

 
 
 

Ωk cos kx +αk −φ( )
k
∑  

 

€ 

−
ΔτC

2

2
cosθ
sinθ

Ωk
k
∑ sin kx +αk −φ( ) kVo cosθ +Ωo −

cosθ
sinθ

Ω ′ k cos ′ k x +α ′ k −φ( )
′ k 
∑

 
 
 

 
 
 

 .

     (13b) 
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 Random Phase Approximation.  In order to calculate the mean and variance of the 

random variables 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ) we assume that the wave phase factors 

€ 

kx +αk −φ  are uniform random variables defined on the interval 

€ 

0,2π[ ].  Recall that the 

mean and variance of any variable 

€ 

A  is given, respectively, by 

€ 

A  and by 

€ 

A2 − A 2  

where the bracket   

€ 

…  indicates an average over an ensemble of possible values of its 

argument each weighted with a probability.  The meaning of this average is defined by 

the following thought experiment.  

 Imagine performing an indefinitely large number of experimental trials.  In each 

trial the charged particle is initialized with the same pitch angle 

€ 

θ t + i −1( )ΔτC[ ] in the 

same magnetic field.  The initial particle position 

€ 

x t + i −1( )ΔτC[ ] and phase angle 

€ 

φ t + i −1( )ΔτC[ ] are uncontrolled random variables in these experimental trials subject to 

the random phase approximation, that is, subject to the requirement that the phase 

€ 

kx +αk −φ  is uniformly distributed on the interval 

€ 

0,2π[ ].  The particle coordinates are 

then allowed to evolve for a correlation time 

€ 

ΔτC  and the random variables 

€ 

Ψi t;ΔτC( )  

and 

€ 

Ζ i t;ΔτC( ) measured.  These random variables are distributed over the interval 

€ 

0,2π[ ] 

each value of which is associated with a probability that is constructed from the relative 

frequencies of the values of 

€ 

Ψi t;ΔτC( )  and

€ 

Ζ i t;ΔτC( ) realized in the experimental trials.  

Note that the initial pitch angle 

€ 

θ t + i −1( )ΔτC[ ] or, more briefly, 

€ 

θ  is a given, that is, an 

initial, sure value in these experimental trials.   

 The following are consequences of the random phase approximation and this 

definition of the bracket average: 

€ 

cos kx +αk −φ( ) = 0 , 

€ 

sin kx +αk −φ( ) = 0 , 

€ 

cos kx +αk −φ( )sin kx +αk −φ( ) = 0, 

€ 

cos kx +αk −φ( )cos ′ k x +α ′ k −φ( ) = δk, ′ k 2 , 
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€ 

sin kx +αk −φ( )sin ′ k x +α ′ k −φ( ) = δk, ′ k 2 , and 

€ 

f kx +αk −φ( )g θ( ) = f kx +αk −φ( ) g θ( ) where 

€ 

f kx +αk −φ( )  is any function of the 

random phase variable 

€ 

kx +αk −φ  and 

€ 

g θ( ) is any function of the sure variable 

€ 

θ .  

 We find, after some algebra, that, through second order in 

€ 

ΔτC : 

 

  

€ 

mean Ψi t;ΔτC( ){ } = −
cosθ
sinθ

ΔτC
2

4
Ωk
2

k
∑  , (14a) 

 

  

€ 

var Ψi t;ΔτC( ){ } =
ΔτC

2

2
Ωk
2

k
∑  , (14b) 

 

  

€ 

mean Ζ i t;ΔτC( ){ } = 0 , (14c) 

and 

  

€ 

var Ζ i t;ΔτC( ){ } =
cos2θ
sin2θ

ΔτC
2

2
Ωk
2

k
∑  . (14d)  

 

Note that the mean and variance of 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ), as displayed in these 

equations, are independent of sub-increment index 

€ 

i  although they remain implicit 

functions of the time 

€ 

t  through the dependence of 

€ 

θ  and 

€ 

ΔτC  on time 

€ 

t .   

 This latter property allows us to further simplify the sums on the right hand side 

of (10).  In particular, we insert expressions (14) for the mean and variance of 

€ 

Ψi t;ΔτC( )  

and 

€ 

Ζ i t;ΔτC( ), complete the indicated sums, and use 

€ 

n = Δt ΔτC .  Then equations (10) 

become 
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€ 

Δθ = Nθ ,t
cosθ
sinθ

nΔτC
2

4
Ωk
2

k
∑ , nΔτC

2

2
Ωk
2

k
∑

 

 
 

 

 
  

    

€ 

= Nθ ,t
cosθ
sinθ

ΔτCΔt
4

Ωk
2

k
∑ ,ΔτCΔt

2
Ωk
2

k
∑

 

 
 

 

 
  

    

€ 

=
cosθ
sinθ

ΔτCΔt
4

Ωk
2

k
∑ +

ΔτCΔt
2

Ωk
2

k
∑ Nθ ,t 0,1[ ] (15a) 

 

and 

 

   

€ 

Δφ = −ΩoΔt +
cosθ
sinθ

Nφ ,t 0,
ΔτC

2n
2

Ωk
2

k
∑

 

 
 

 

 
  

    

€ 

= −ΩoΔt +
cosθ
sinθ

Nφ ,t 0,
ΔτCΔt
2

Ωk
2

k
∑

 

 
 

 

 
  

    

€ 

= −ΩoΔt +
cos2θ
sin2θ

ΔτCΔt
2

Ωk
2

k
∑ Nφ ,t 0,1[ ]  (15b) 

 

where, again, the random variables 

€ 

Nθ ,t 0,1( )  and 

€ 

Nφ ,t 0,1( ) are, for different values of their 

subscripts, statistically independent unit normals. 

 For clarity, we rewrite the stochastic equations of motion (15) in differential form, 

that is, we replace the interval 

€ 

Δt  by its equivalent 

€ 

dt , since the time scale quantified by 

€ 

t  is the only time scale that remains manifest.  Then equations (15) become 

 

  

€ 

dθ =
ΔτC
4
cosθ
sinθ

Ωk
2

k
∑ dt +

ΔτC
2

Ωk
2

k
∑ dtNθ ,t 0,1( )  (16a) 
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and 

 

  

€ 

dφ = −Ωodt +
ΔτC
2
cos2θ
sin2θ

Ωk
2

k
∑ dtNφ ,t 0,1( )  . (16b)  

 

A similar process leaves the third equation 

 

  

€ 

dx = Vo cosθdt   (16c) 

 

unchanged.  Equations (16) are the stochastic differential equations that mimic the 

deterministic equations (5) when all three assumptions, random variable, two-time scale, 

and random phase, are justified. 

 

IV.  AUTO-CORRELATION TIME 

 The stochastic differential equation of motion for the pitch angle (16a) assumes 

the form 

€ 

dθ = Cdt + DdtNθ ,t 0,1( ) where 

€ 

C  is the pitch angle drift rate and 

€ 

D is the 

pitch angle diffusion rate.  Accordingly, these are 

 

  

€ 

C =
ΔτC
4
cosθ
sinθ

Ωk
2

k
∑  (17a) 

and 

  

€ 

D =
ΔτC
2

Ωk
2

k
∑  . (17b) 
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That 

€ 

C  and 

€ 

D are related by 

€ 

C = cosθ sinθ( ) D 2( )  is an expression of the fluctuation-

dissipation theorem35 applied to this system. 

 Because the auto-correlation time 

€ 

ΔτC  in expressions (17) may depend, in 

possibly complicated ways, upon the dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x , the amplitude 

€ 

Ωo, 

and the spectrum of amplitudes 

€ 

Ωk, the simplicity of (17) is only apparent.  We use the 

following argument in order to determine the dependence of 

€ 

ΔτC  on these variables. 

 Recall that the auto-correlation time 

€ 

ΔτC  must be large enough to make 

€ 

Ψi t;ΔτC( )  and 

€ 

Ζ i t;ΔτC( ) with different indices 

€ 

i  statistically independent but small 

enough so that the dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x  do not change significantly during an 

auto-correlation time.  Thus, for instance, 

€ 

ΔτC  must be such as to render 

  

  

€ 

Ψi ΔtC ;ΔτC( ) = Ωk
k
∑ sin kx +αk −φ( )

t+ i−1( )Δτ C

t+ iΔτ C

∫ dt  (18a) 

and 

  

€ 

Ψi+1 t;ΔτC( ) = Ωk
k
∑ sin kx +αk −φ( )

t+ iΔτ C

t+ i+1( )Δτ C

∫ dt   (18b) 

 

statistically independent random variables at all times 

€ 

t .  A necessary condition for their 

statistical independence is  

 

   

€ 

Ψi t;ΔτC( )Ψi+1 t;ΔτC( ) = Ψi t;ΔτC( ) Ψi+1 t;ΔτC( )  . (19a)   
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Given that 

€ 

Ψi t;ΔτC( )  is independent of sub-interval index 

€ 

i , condition (19a) reduces to 

 

  

€ 

Ψi t;ΔτC( )Ψi+1 t;ΔτC( ) = Ψi t;ΔτC( ) 2
 . (19b) 

 

 Transforming the integration variable of (18b) from 

€ 

t  to 

€ 

t + ΔτC  transforms (18b) 

to its equivalent 

  

  

€ 

Ψi+1 t,ΔτC( ) = Ωk
k
∑ sin kx +αk −φ( )cos kΔx − Δφ( ){ }

t+ i−1( )Δτ C

t+ iΔτ C

∫ dt  

   

€ 

+ Ωk
k
∑ cos kx +αk −φ( )sin kΔx − Δφ( ){ }

t+ i−1( )Δτ C

t+ iΔτ C

∫ dt  (20) 

 

where here 

€ 

Δx = x t + ΔτC( ) − x t( )  and 

€ 

Δφ = φ t + ΔτC( ) −φ t( ) .  Since the two-time scale 

assumption requires that the dependent variables shift very little during an auto-

correlation time 

€ 

ΔτC , 

€ 

kΔx − Δφ << 1 and we may expand the right hand side of (20) so 

that it becomes, through second order in 

€ 

kΔx −Δφ , 

     

 

€ 

Ψi+1 t;ΔτC( ) = Ωk
k
∑ 1−

kΔx − Δφ( )2

2
 

 
 

 

 
 sin kx +αk −φ( )

t+ i−1( )Δτ C

t+ iΔτ C

∫ dt  

   

€ 

+ Ωk
k
∑ kΔx − Δφ( )cos kx +αk −φ( )

t+ i−1( )Δτ C

t+ iΔτ C

∫ dt  . (21) 

 

We now form the product of 

€ 

Ψi t;ΔτC( )  and 

€ 

Ψi+1 t;ΔτC( ) 
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€ 

Ψi t;ΔτC( )Ψi+1 t;ΔτC( ) =  

 

€ 

Ω ′ k 
′ k 
∑ sin ′ k x +α ′ k −φ( )

t + i−1( )Δτ C

t + iΔτ C

∫ dt Ωk
k
∑ 1−

kΔx − Δφ( )2

2
 

 
 

 

 
 sin kx +αk −φ( )

t + i−1( )Δτ C

t + iΔτ C

∫ dt  

 

€ 

+ Ω ′ k 
′ k 
∑ sin ′ k x +α ′ k −φ( )

t + i−1( )Δτ C

t + iΔτ C

∫ dt Ωk
k
∑ kΔx − Δφ( )cos kx +αk −φ( )

t + i−1( )Δτ C

t + iΔτ C

∫ dt  . (22) 

      

 Then we replace the left hand of (19b) with the right hand side of (22) and the right hand 

side of (19b) with the right hand side of (14a) and exploit the random phase 

approximation to produce 

 

  

€ 

ΔτC
2

2
Ωk
2

k
∑ 1−

kΔx − Δφ( )2

2

 

 

 
 

 

 

 
 

=
cos2θ
sin2θ

ΔτC
4

42
Ωk
2

k
∑
 
 
 

 
 
 

2

 . (23) 

 

 

 Condition (23) must be consistent with the stochastic differential equations of 

motion (16).  The latter can be directly integrated over an auto-correlation time since the 

dependent variables 

€ 

θ , 

€ 

φ , and 

€ 

x  do not change significantly over 

€ 

ΔτC .  Thus, equations 

(16) require that 

 

  

€ 

kΔx − Δφ = kVo cosθΔτC +ΩoΔτC −
ΔτC

2

2
cos2θ
sin2θ

Ωk
2

k
∑ Nφ ,t 0,1( )  (24) 
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from which the result 

 

  

€ 

kΔx − Δφ( )2 = kVo cosθ +Ωo( )2ΔτC2 +
Δτ c

2

2
cos2θ
sin2θ

Ωk
2

k
∑  , (25) 

 

follows immediately.  Note that (25) is correct through second order in 

€ 

ΔτC .    

 Using (25) to eliminate 

€ 

kΔx − Δφ( )2  from (23) and solving for the auto-

correlation time 

€ 

ΔτC  produces the expression 

 

  

€ 

ΔτC =
2

kVo cosθ +Ωo( )2 +
3
4
cos2θ
sin2θ

Ωk
2

k
∑

 (26) 

 

where here the overbar indicates a wave energy density weighted average  

 

  

€ 

kVo cosθ +Ωo( )2 =
Ωk
2 kVo cosθ +Ωo( )2

k
∑

Ωk
2

k
∑

 . (27) 

 

 Result (26) also follows, in similar fashion, from the alternative but equivalent necessary 

condition 

€ 

Zi t,ΔτC( )Zi+1 t,ΔτC( ) = Zi t,ΔτC( ) Zi+1 t,ΔτC( ) .   

 Equation (26) indicates that the auto-correlation time 

€ 

ΔτC  is, as suggested earlier, 

a relatively complicated function of the pitch angle 

€ 

θ , the background field amplitude 



“Stochastic Analysis . . .” Lemons et. al. 22 
 
 

€ 

Ωo, and the spectrum of wave amplitudes 

€ 

Ωk.  When 

€ 

ΔτC  is eliminated from expression 

(17b) for the diffusion rate 

€ 

D we arrive at 

 

  

€ 

D =
Ωk
2

k
∑ 2

kVo cosθ +Ωo( )2 +
3
4
cos2θ
sin2θ

Ωk
2

k
∑

 . (28) 

 

Therefore, the diffusion rate 

€ 

D is also a function of the pitch angle 

€ 

θ , the background 

field amplitude 

€ 

Ωo, and the spectrum of wave amplitudes 

€ 

Ωk.  These factors regulate the 

size of 

€ 

ΔτC  and 

€ 

D in the following ways. 

 The diffusion rate 

€ 

D is directly proportional to the wave energy density 

€ 

Ωk
2

k
∑  for 

relatively small 

€ 

Ωk
2

k
∑  -- a result that is consistent with quasi-linear theory.1, 23  However, 

when the wave energy density and pitch angle are such that 

€ 

3
4
cos2θ
sin2θ

Ωk
2

k
∑ >> kVo cosθ +Ωo( )2 , the diffusion rate becomes proportional to the square 

root of the wave energy density, that is, 

€ 

D∝
sinθ
cosθ

Ωk
2

k
∑ .  This dependence, one not 

reproduced by standard quasi-linear theory, is especially important near the loss cone of 

trapped particles where pitch angles are small. 

 The size of the positive definite term 

€ 

kVo cosθ +Ωo( )2  in (26) and (28) depends 

on whether or not the wave amplitudes are strongly peaked or not and whether or not the 

particles are resonant with the waves at this peak.  When wave spectra are strongly 

peaked at wave number 

€ 

ko the term 

€ 

kVo cosθ +Ωo( )2 ≈ koVo cosθ +Ωo( )2.  Particles with 
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speed 

€ 

Vo  and pitch angle 

€ 

θ  that satisfy 

€ 

koVo cosθ +Ωo ≈ 0  are said to be resonant with 

the wave 

€ 

ko.  Therefore, the auto-correlation time and diffusion rate are relatively large 

for particles resonant with highly peaked spectra and relatively small otherwise.  Wave 

spectra that are broad rather than peaked do not exhibit this behavior.   

 These features are quantitatively illustrated when the spectral wave energy density 

€ 

Ωk
2 is a continuous function of 

€ 

k  proportional to a Gaussian wave number distribution 

€ 

exp − k − ko( )2 2Δk 2[ ] with mean 

€ 

ko  and (standard deviation) width 

€ 

Δk .  In this case 

 

  

€ 

kVo cosθ +Ωo( )2 = ΔkVo cosθ( )2 + koVo cosθ +Ωo( )2  . (29) 

 

This factor is a minimum, and thus 

€ 

ΔτC  and 

€ 

D are, according to (26) and (28), near 

maximum whenever the particle pitch angle 

€ 

θ  is related to the mean wave number 

€ 

ko by 

the resonance condition 

 

  

€ 

koVo cosθ +Ωo = 0 , (30) 

 

a condition met for electrons (

€ 

Ωo = −Ωoe < 0) with a pitch angles 

€ 

0 ≤ θ < π 2  and for 

positive ions (

€ 

Ωo = Ωoi > 0) with pitch angles 

€ 

π 2 < θ ≤ π . 

 

V.  PHYSICAL LIMITATIONS 

 We have made three assumptions in deriving expressions for the stochastic 

differential equations of motion (16) and their consequences:  the random variable, the 
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two-time scale, and the random phase assumptions.  By requiring that the stochastic 

equations of motion (16) and their consequences be consistent with these assumptions we 

uncover the physical parameter range for which equations (16) are valid. 

 The random phase approximation is always consistent with the stochastic 

differential equations of motion (16) because the right hand sides of the equations of 

motion (16b) and (16c) for the dependent variables 

€ 

x  and 

€ 

φ  are themselves independent 

of 

€ 

x  and 

€ 

φ .  Therefore, if the random variable 

€ 

kx +αk −φ  is at any time uniformly 

distributed, it will remain so because there is no tendency in (16) for 

€ 

kx +αk −φ  to 

bunch. 

 On the other hand, the random variable and two-time scale assumptions require, 

respectively, that a correlation time 

€ 

ΔτC  exist and that it be small compared to the time 

required for the dependent variables to change significantly.  This latter time is 

quantified, according to (16a), with the drift and diffusion times 

€ 

C−1 and 

€ 

D−1.  The 

diffusion time 

€ 

D−1 restricts the relative wave energy density 

€ 

ε , that is,  

 

  

€ 

ε =
Ωk
2

k
∑
Ωo
2  , (31) 

 

more than does the drift time 

€ 

C−1.  Therefore, the random variable and two-time scale 

assumptions reduce to the single condition 

€ 

ΔτCD << 1, which, given (26) and (28), is 

equivalent to 
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€ 

ε <<
kVo cosθ
Ωo

+1
 

 
 

 

 
 

2

+
3
4
cos2θ
sin2θ

ε  . (32a) 

 

When the wave energy spectrum is distributed continuously in a Gaussian with mean 

€ 

ko 

and width 

€ 

Δk  condition (32a) becomes 

 

  

€ 

ε <<
ΔkVo cosθ

Ωo

 

 
 

 

 
 

2

+
koVo cosθ

Ωo

+1
 

 
 

 

 
 

2

+
3
4
cos2θ
sin2θ

ε  . (32b) 

 

 According to conditions (32), the angle at which 

€ 

3cos2θ( ) 4sin2θ( ) = 1 defines a 

critical pitch angle 

€ 

θc = tan−1 3 4 ≈ 41o  much below which the stochastic equations of 

motion (16) are valid for any relative wave energy 

€ 

ε .  Alternatively, for pitch angles 

€ 

θ  

much above the critical angle 

€ 

θC ≈ 41
o  the validity of equations (16) is limited to the 

regime for which 

 

  

€ 

ε <<
kVo cosθ
Ωo

+1
 

 
 

 

 
 

2

   (33a) 

or equivalently 

  

€ 

ε <<
ΔkVo cosθ

Ωo

 

 
 

 

 
 

2

+
koVo cosθ

Ωo

+1
 

 
 

 

 
 

2

 . (33b) 

 

Evidently, the theory is most severely constrained for large pitch angle particles resonant 

with highly peaked spectra. 
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VI.  TEST PARTICLE SIMULATIONS 

 We solve the deterministic equations of motion (5) for a series of non-interacting 

electrons.  This series of solutions constitutes one test particle simulation.  The charged 

particles in any one test particle simulation are initialized with the same pitch angle 

€ 

θo 

and with random initial position 

€ 

xo  and phase 

€ 

φo uniformly distributed, respectively, 

over the largest wavelength and the interval 

€ 

0,2π[ ].  Also the electrons in a test particle 

simulation interact with the same spectrum of wave amplitudes. 

 Because we simulate electrons, 

€ 

Ωo = −Ωoe  where 

€ 

Ωoe = eBo γ ome  is the (positive 

definite) relativistic electron cyclotron frequency.  Therefore, the normalized auto-

correlation time 

€ 

ΔτCΩoe  and diffusion rate 

€ 

D Ωoe  become, according to (26) and (28) 

 

  

€ 

ΔτCΩoe =
2

kVo

Ωoe

cosθ −1
 

 
 

 

 
 

2

+
3
4
cos2θ
sin2θ

ε

 (34a) 

 

and 

 

  

€ 

D
Ωoe

=
ε 2

kVo

Ωoe

cosθ −1
 

 
 

 

 
 

2

+
3
4
cos2θ
sin2θ

ε

 . (34b) 
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 The test particle simulations illustrate and test the accuracy of expressions (34a) 

and (34b).  The right hand sides of (34a) and (34b) depend upon the shape of the wave 

spectrum with which the electrons interact as well as upon the electron pitch angle 

€ 

θ  and 

the relative wave energy density 

€ 

ε .  We simulate two shapes.  The first spectrum is flat; 

the second is Gaussian-shaped.  In each test particle simulation we plot the variance of 

the pitch angle 

€ 

θ 2 − θ 2  versus normalized time 

€ 

Ωoet .  After a brief period during 

which the variance grows as 

€ 

t 2 , the variance grows linearly in time as 

€ 

t .  This linear 

growth rate is the normalized diffusion constant 

€ 

D Ωoe  as long as the magnitude of the 

variance stays very small compared to its equilibrium value 

€ 

≈1 2( ).  As we shall see the 

normalized auto-correlation time 

€ 

ΔτCΩoe  is closely correlated with the duration of initial 

parabolic growth.  Sometimes, the linear growth phase of the variance is followed by 

oscillations in the variance especially if the particles are not resonant with any of the 

prescribed waves. 

 Flat Spectrum.  In this case the wave field amplitudes are uniform, that is, 

€ 

Ωk = Ωw > 0 , for 

€ 

nw  wave numbers between minimum and maximum values, 

respectively, 

€ 

kmin  and 

€ 

kmax .  The normalized wave numbers are 

  

€ 

kVo Ωoe = 1,2,…nw( ) nw cosθmax( )  with maximum 

€ 

kmaxVo Ωoe =1 cosθmax  and minimum 

€ 

kminVo Ωoe = 1 nw cosθmax( ) where the angle 

€ 

θmax  is a convenient way to parameterize 

€ 

kmax  and 

€ 

kmin  and an indication of the maximum pitch angle 

€ 

cos−1 1 kmaxVo Ωoe( )[ ]  at 

which particles can resonate with a wave.  When the number of waves is large, that is, 

when 

€ 

nw >>1, equations (34) reduce to 
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€ 

ΔτCΩoe =
6

cosθ
cosθmax

 

 
 

 

 
 

2

− 3 cosθ
cosθmax

 

 
 

 

 
 + 3 + ε

9
4
cos2θ
sin2θ

 (35a) 

 

and 

 

  

€ 

D
Ωoe

=
ε 3 2

cosθ
cosθmax

 

 
 

 

 
 

2

− 3 cosθ
cosθmax

 

 
 

 

 
 + 3+ ε

9
4
cos2θ
sin2θ

 . (35b) 

 

 Figures 1-3 display features of the time evolution of the pitch angle variance 

€ 

θ 2 − θ 2  of 

€ 

1000 particles with initial pitch angle 

€ 

θo = 20o.  These particles scatter 

from a flat spectrum of 

€ 

100 magnetic waves with relative energy 

€ 

ε = 0.001 and wave 

numbers parameterized by a maximum resonant pitch angle 

€ 

θmax = 80o .  One component 

of the wave magnetic field with random uniformly distributed wave phase angles 

€ 

αk  is 

shown in Figure 1.  The root mean square magnetic field strength is recognizably close to 

€ 

ε = 0.001 ≈ 0.0316.  Figure 2 shows the pitch angle variance 

€ 

θ 2 − θ 2  as a function 

of normalized time 

€ 

tΩoe .  Initially when the variance 

€ 

θ 2 − θ 2  grows as 

€ 

t 2  the particles 

are still evolving deterministically from their initial conditions.  The duration of this 

deterministic growth phase corresponds closely to the auto-correlation time as determined 

by (35a), that is, for these parameters it corresponds closely to 

€ 

ΔτCΩoe = 0.611.  The 

normalized diffusion rate 

€ 

D Ωoe  for these parameters is determined numerically from 

this graph and others like it by fitting a straight line to the variance’s linear growth phase.  
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Its slope (

€ 

5.2 ⋅10−4 ) is reasonably close to that (

€ 

3.1⋅10−4 ) predicted by equation (35b).  A 

histogram showing the pitch angle distribution at the end of the evolution shown in 

Figure 2, that is, at 

€ 

tΩoe = 1.5 , is shown in Figure 3.  In this and other test particle 

simulations particle pitch angles are not allowed to evolve very far from their initial 

value. 
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Figure 1.  One component of the normalized magnetic field composed of 100 equal 

magnitude waves over the longest wavelength for relative wave energy 

€ 

ε = 0.001 and 

spectral parameter 

€ 

θmax = 80o .
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Figure 2.  (Color online)  Particle variance 

€ 

θ 2 − θ 2  as a function of normalized time 

€ 

tΩoe  for 1000 particles with initial pitch angle 

€ 

θo = 20o interacting with 

€ 

100 equal 

magnitude waves of relative wave energy density 

€ 

ε = 0.001 and spectral parameter 

€ 

θmax = 80o .  The slope of the straight line superimposed on the linear growth phase is the 

normalized diffusion rate 

€ 

D Ωoe  

€ 

tΩoe  

€ 

θ 2 − θ 2  
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Figure 3.  Histogram of 1000 particles in pitch angle space at the end of the period shown 

in Figure 2, that is, at 

€ 

tΩoe =1.5. 

 

 

 Figure 4 shows the normalized diffusion rate 

€ 

D Ωoe  as a function of initial pitch 

angle 

€ 

θo as the latter varies from 

€ 

0o to 

€ 

180o.  The particles interact with 

€ 

100 equal 

magnitude waves of relative wave energy 

€ 

ε = 0.001 and spectral parameter 

€ 

θmax = 80o .  

The solid line is the diffusion constant as determined by (35b).  The diffusion constant 

extracted from a single 200 test particle simulation varies as much as 

€ 

100% with the 

particular realization of the set of uniform random variables 

€ 

xo  and 

€ 

φo.  For this reason 

€ 

θ
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we average the diffusion constant extracted from three 

€ 

200 test particle simulations of 

the deterministic equations of motion (5) in order to produce the filled circles.  The 

simulations reproduce the expected magnitude and structure fairly well. 
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Figure 4.  Normalized diffusion rate 

€ 

D Ωoe  versus initial pitch angle 

€ 

θo for interaction 

with a flat spectrum of 

€ 

100 waves parameterized by 

€ 

θmax = 80o  with relative energy 

€ 

ε = 0.001.  The solid curve is determined from (35b).  Each filled circle is the average of 

three numerical diffusion rates extracted from 

€ 

200 test particle solutions of the 

deterministic equations of motion (5). 

 

 

 Figure 5 shows the normalized diffusion rate 

€ 

D Ωoe  for initial pitch angle 

€ 

θo =15o  and interaction with 

€ 

100 equal magnitude waves parameterized by 

€ 

θmax = 80o  

€ 

θo
 

€ 

D Ωoe
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and relative wave energy densities 

€ 

ε ranging from 

€ 

10−4  to 

€ 

102.  The solid curve is 

€ 

D Ωoe  

determined by (35b) for these parameters.  The filled circles are the average diffusion rate 

extracted from three 

€ 

200 test particle numerical solutions of the deterministic equations 

of motion (5) for these parameters.  As expected, the theoretical description remains 

fairly accurate even for wave energy densities much larger than the background field 

energy density. 
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Figure 5.  Normalized diffusion rate 

€ 

D Ωoe  for initial pitch angle 

€ 

θo =15o  and interaction 

with 

€ 

100 equal magnitude waves parameterized by 

€ 

θmax = 80o  as a function of relative 

wave energy 

€ 

ε ranging from 

€ 

10−4  to 

€ 

102.  The solid curve is determined from equation 

(35b) while the filled circles are calculated from three 200 test particle numerical 

solutions of the deterministic equations of motion (5). 
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 Figure 6 shows the normalized diffusion rate 

€ 

D Ωoe  for particles with initial pitch 

angle 

€ 

θo = 90o  interacting with a flat spectrum of 100 waves with spectral parameter 

€ 

θmax = 80o  versus relative wave energy 

€ 

ε.  The solid curve is 

€ 

D Ωoe  as determined by 

(35b) for these parameters.  In this case expressions (35) give a simple result:  

€ 

ΔτCΩoe = 2 , 

€ 

D Ωoe ≈ ε 2 , and thus 

€ 

DΔτC = ε .  Therefore, when 

€ 

ε ≥1, 

€ 

DΔτC ≥ 1 and 

the theoretical model should fail.  Indeed, the numerical diffusion rate calculated from the 

average of three 

€ 

200 test particle solutions of the deterministic equations of motion (5) 

falls short by more than factor of ten below that predicted by (35b) when 

€ 

ε =100 . 
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Figure 6.  Normalized diffusion rate 

€ 

D Ωoe  as a function of relative wave energy 

€ 

ε for 

initial pitch angle 

€ 

θo = 90o  and spectral properties 

€ 

θmax = 80o  and 

€ 

nw =100 .  The solid 

curve is determined by equation (35b) while the filled circles are the diffusion rate 

€ 

D Ωoe  

averaged over three 200 test particle solutions of the deterministic equations of motion 

(5). 

 

 

 Gaussian Spectrum.  In this case the waves have a spectral energy density 

€ 

Ωk
2 

proportional to 

€ 

exp − k − ko( )2 2Δk 2[ ] with 

€ 

nw discrete wave numbers evenly spaced 

between a minimum 

€ 

kmin  and a maximum 

€ 

kmax .  To parameterize this distribution we, 

somewhat arbitrarily, choose a discrete Gaussian wave spectrum with four-sigma domain, 

€ 

ε  

€ 

D Ωoe
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that is, one for which 

€ 

kmax − kmin = 4Δk  centered on the mean or peak wave number 

€ 

ko.  

This parameterization allows us to select the wave number at peak spectral energy 

density 

€ 

ko and the smallest wave number 

€ 

kmin  and from these calculate the other 

parameters, that is, 

€ 

kmax = 2ko − kmin  and 

€ 

Δk = ko − kmin( ) 2 .  Accordingly, the normalized 

wave numbers are 

  

€ 

kVo Ωoe = kminVo Ωoe( ) + 0,1,2,…nw( ) 2 nw( ) koVo Ωoe( ) − kminVo Ωoe( )[ ].  If the wave 

numbers 

€ 

k  were distributed continuously over an infinite interval, the auto-correlation 

time and the diffusion rate would be given by 

 

  

€ 

ΔτCΩoe =
2

ΔkVo

Ωoe

cosθ
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+
koVo

Ωoe

cosθ −1
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Ωoe
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ε 2
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+
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cosθ −1
 

 
 

 

 
 

2

+
3
4
cos2θ
sin2θ

ε

 . (36b) 

 

Since the waves are actually discretely distributed over a finite range, equations (36) are 

only approximate. 

 Figure 7 shows the diffusion rate caused by 

€ 

100 waves distributed as a Gaussian 

with 

€ 

kminVo Ωoe = 1.0  and 

€ 

koVo Ωoe = 3.0 .  Therefore, 

€ 

ΔkVo Ωoe = 1.0 and 

€ 

kmaxVo Ωoe = 5.0.  These choices make the largest amplitude waves resonant with 
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particles at pitch angle 

€ 

71o  and the whole four-sigma spectrum of waves resonant with 

particles with pitch angles between 

€ 

0o and 

€ 

78o .  The solid line is the diffusion rate as 

determined by (36b).  The filled circles are the numerically determined diffusion rate 

averaged over three 

€ 

200 test particle solutions of the deterministic equations of motion 

(5).  In all these simulations the relative wave energy is 

€ 

ε = 0.01.  The numerical results 

are noisy but roughly match the magnitude and structure expected from equation (36b). 
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Figure 7.  Normalized diffusion rate 

€ 

D Ωoe  as a function of initial pitch angle 

€ 

θo  for particles 

interacting with 

€ 

100 waves with relative wave energy 

€ 

ε = 0.01 and spectral energy density 

proportional to a four-sigma Gaussian with mean 

€ 

koVo Ωoe = 3.0 , minimum 

€ 

kminVo Ωoe = 1.0 , maximum 

€ 

kmaxVo Ωoe = 5.0, and (standard deviation) width 

€ 

ΔkVo Ωoe = 1.0.  The solid line is determined from the relation (36b).  Filled circles are 

averaged over three 

€ 

200 test particle solutions of the deterministic equations of motion (5). 

 

VII.  CONCLUSION 

 We have derived a theory of the pitch angle scattering of charged particles from a 

static magnetic field composed of a background field and a sum of transverse, circularly 

polarized, magnetic waves.  The derivation starts with the deterministic equations of 

motion (5) and makes those approximations – the random variable, the two-time scale, 
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and the random phase approximation – necessary to transform them into stochastic 

differential equations (16).  From the latter we extract an expression (28) for the pitch 

angle diffusion rate 

€ 

D that is a function of the pitch angle 

€ 

θ , the background field 

amplitude 

€ 

Ωo, the wave energy density 

€ 

Ωk
2

k
∑ , and the shape of the wave amplitude 

spectrum 

€ 

Ωk.  This function remains valid for wave energy densities 

€ 

Ωk
2

k
∑  up to 

€ 

100 

times larger than the energy density of the background field 

€ 

Ωo
2 when the pitch angle is 

much smaller than 

€ 

41o .  Also this function is convergent for resonant particles and for 

particles with 

€ 

90o pitch angles.  These features distinguish the current stochastic theory 

from usual implementations of quasi-linear theory. 

 We have also performed several sets of test particle simulations in which the 

particles are initialized with a specific pitch angle and uniformly distributed random 

positions and phases.  The particles interact with a prescribed, static configuration of 

transverse, circularly polarized, magnetic waves.  These simulations support the theory 

fairly well. 

 This kind of scattering has also been treated extensively by quasi-linear theory 21-

24 and, more recently, by test particle simulations that use spectra of low-frequency waves 

derived analytically25 and from self-consistent plasma simulations.26  Both approaches 

lead to expressions for the pitch angle scattering rate of energetic electrons.  A future 

challenge of the present stochastic approach is to more directly compare its predictions 

with these others. 

 We anticipate extending the stochastic theory to describe inelastic wave-particle 

interactions .  Relativistic electrons trapped in the earth’s magnetosphere do, in fact, 
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interact with relatively high frequency, transverse, whistler waves.25, 36  In this case the 

effect of the wave electric field must be included in the analysis and, as a result, particle 

energy diffusion competes with pitch angle diffusion.  We expect that the random 

variable, the two-time scale, and the random phase approximations will apply in this case 

and that a similar analysis will yield similarly useful results. 

 Inhomogeneities in and the curvature of the earth’s magnetic field cause initially 

field-aligned Alfvén/ion-cyclotron waves to propagate obliquely to the earth’s 

background field.  Thus, an extension of this analysis, which considers only parallel 

propagation, to more realistic conditions would also require a careful treatment of particle 

resonances at multiples of the electron cyclotron frequency since these are consequences 

of oblique propagation.37 

 In this paper we have, in order to validate the current stochastic theory, 

emphasized the initial value problem in which all the test particles are initialized with the 

same pitch angle.  Ultimately, we want to apply this theory to the problem of pitch angle 

scattering into the loss cone of high-energy, relativistic electrons trapped in the earth’s 

magnetic field.  But this scattering usually occurs in the context of a steady state pitch 

angle distribution.  Therefore, future application of these methods and results to 

scattering into the loss cone should emphasize a steady state initial distribution more 

typical of magnetospheric conditions. 
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